[1] |
Matsuoka M, Onodera T, Homan K, et al. Depletion of gangliosides enhances articular cartilage repair in mice[J]. Sci Rep, 2017, 7: 43729. DOI: 10.1038/srep43729.
|
[2] |
Simon TM, Jackson DW. Articular cartilage: injury pathways and treatment options[J]. Sports Med Arthrosc Rev, 2018, 26(1): 31-39. DOI: 10.1097/JSA.0000000000000182.
|
[3] |
Hong H, Seo YB, Kim DY, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering[J]. Biomaterials, 2020, 232: 119679. DOI: 10.1016/j.biomaterials.2019.119679.
|
[4] |
Chen W, Xu Y, Li H, et al. Tanshinone IIA delivery silk fibroin scaffolds significantly enhance articular cartilage defect repairing via promoting cartilage regeneration[J]. ACS Appl Mater Interfaces, 2020, 12(19): 21470-21480. DOI: 10.1021/acsami.0c03822.
|
[5] |
Qi Y, Zhang W, Li G, et al. An oriented-collagen scaffold including Wnt5a promotes osteochondral regeneration and cartilage interface integration in a rabbit model[J]. FASEB J, 2020, 34(8): 11115-11132. DOI: 10.1096/fj.202000280R.
|
[6] |
Shi W, Sun M, Hu X, Ren B, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J]. Adv Mater, 2017, 29(29): 1-7. DOI: 10.1002/adma.201701089.
|
[7] |
Oryan A, Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing[J]. Int J Biol Macromol, 2017, 104(Pt A): 1003-1011. DOI: 10.1016/j.ijbiomac.2017.06.124.
|
[8] |
Shamekhi MA, Mirzadeh H, Mahdavi H, et al. Graphene oxide containing chitosan scaffolds for cartilage tissue engineering[J]. Int J Biol Macromol, 2019,127:396-405. DOI: 10.1016/j.ijbiomac. 2019. 01.020.
|
[9] |
李晋玉, 赵学千, 孙旗, 等. 骨碎补总黄酮的实验及临床研究概况[J]. 中国骨质疏松杂志,2018, 24(10): 1357-1364. DOI: 10.3969/j.issn. 1006-7108.2018.10.019.
|
[10] |
韩亚力, 罗奕, 曾佳学. 骨碎补总黄酮基于Notch信号通路改善骨质疏松的作用及机制研究[J]. 中国免疫学杂志, 2018, 34(2): 261-266. DOI: 10.3969/j.issn.1000-484X.2018.02.021.
|
[11] |
Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends[J]. Biomaterials, 2012, 33(10): 2848-2857. DOI: 10.1016/j.biomaterials.2011.12.028.
|
[12] |
郭英, 李佩芳, 舒晓春, 等. 骨碎补总黄酮对骨髓间充质干细胞成骨分化过程中Wnt/β-catenin信号通路的影响[J]. 中华医学杂志, 2012, 92(32): 2288-2291. DOI: 10.3760/cma.j.issn.0376-2491.2012.32.017.
|
[13] |
尚平, 贺宪, 安耀武, 等. 骨碎补总黄酮对骨关节炎家兔骨髓间充质干细胞软骨定向分化的实验研究[J]. 生物骨科材料与临床研究, 2009, 6(6): 10-13. DOI: 10.3969/j.issn.1672-5972.2009.06.003.
|
[14] |
Guo W, Shi K, Xiang G, et al. Effects of rhizoma drynariae cataplasm on fracture healing in a rat model of osteoporosis[J]. Med Sci Monit, 2019, 25: 3133-3139. DOI: 10.12659/MSM.914568.
|
[15] |
李明, 李君, 付昆. 骨碎补总黄酮对膝骨关节炎模型兔HIF-1α和VEGF表达的影响[J]. 中国药房, 2018, 29(18): 2484-2488. DOI: 10.6039/j.issn.1001-0408.2018.18.09.
|
[16] |
Li DW, Lei X, He FL, et al. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells[J]. Int J Biol Macromol, 2017, 105(Pt 1): 584-597. DOI: 10.1016/j.ijbiomac.2017.07.080.
|
[17] |
刘亚珍, 邱晓明, 李松凯. 正交设计优化万古霉素/聚乳酸-羟基乙酸共聚物微球的制备及体外药物释放[J]. 中国组织工程研究, 2019, 23(2): 211-217. DOI: 10.3969/j.issn.2095-4344.1509.
|
[18] |
薛鹏, 杜斌, 王礼宁, 等. 可控释淫羊藿苷-β-磷酸三钙复合支架的制备[J]. 中国组织工程研究, 2018, 22(6): 865-870. DOI: 10.3969/j.issn.2095-4344.0060.
|
[19] |
Widhiyanto L, Utomo DN, Perbowo AP, et al. Macroscopic and histologic evaluation of cartilage regeneration treated using xenogenic biodegradable porous sponge cartilage scaffold composite supplemented with allogenic adipose derived mesenchymal stem cells (ASCs) and secretome: an in vivo experimental study[J]. J Biomater Appl, 2020, 35(3): 422-429. DOI: 10.1177/0885328220934938.
|
[20] |
徐立岩, 马剑雄, 王颖, 等. 关节制动对大鼠膝关节软骨缺损修复的影响[J]. 中国组织工程研究, 2016, 20(37): 5496-5503. DOI: 10.3969/j.issn.2095-4344.2016.37.004.
|
[21] |
Borrelli J Jr, Olson SA, Godbout C, et al. Understanding articular cartilage injury and potential treatments[J]. J Orthop Trauma, 2019, 33 Suppl 6: S6-S12. DOI: 10.1097/BOT.0000000000001472.
|
[22] |
Krych AJ, Saris DBF, Stuart MJ, et al. Cartilage injury in the knee: assessment and treatment options[J]. J Am Acad Orthop Surg, 2020, 28(22): 914-922. DOI: 10.5435/JAAOS-D-20-00266.
|
[23] |
柳海峰, 吴冰, 梁达强, 等. 基质诱导自体软骨细胞移植术治疗距骨软骨损伤临床疗效观察[J]. 中国临床解剖学杂志, 2019, 37(1): 91-96. DOI: 10.13418/j.issn.1001-165x.2019.01.019.
|
[24] |
吴紫璇, 郝征, 郭亚萍, 等. 骨碎补总黄酮通过SDF1/CXCR4信号途径促进小鼠骨髓基质细胞ST-2迁移[J]. 天津医药, 2019, 47(10): 1009-1014. DOI: 10.11958/20192305.
|
[25] |
Yang S, Qian Z, Liu D, et al. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration[J]. Cell Tissue Bank, 2019, 20(2): 209-220. DOI: 10.1007/s10561-019-09760-z.
|
[26] |
Maity PP, Dutta D, Ganguly S, et al. Isolation and mass spectrometry based hydroxyproline mapping of type II collagen derived from Capra hircus ear cartilage[J]. Commun Biol, 2019, 2: 146. DOI: 10.1038/s42003-019-0394-6.
|