[1] |
Liu J, Li SJ, Qian L, et al. Effects of acute mild hypoxia on cerebral blood flow in pilots[J]. Neurol Sci, 2021, 42(2): 673-680. DOI: 10.1007/s10072-020-04567-3.
|
[2] |
González Fuentes J, Insausti Serrano R, Cebada Sánchez S, et al. Neuropeptides in the developing human hippocampus under hypoxic-ischemic conditions[J]. J Anat, 2021, 239(4): 856-868. DOI: 10.1111/joa.13458.
|
[3] |
Zhou Y, Lu H, Liu Y, et al. Cirbp-PSD95 axis protects against hypobaric hypoxia-induced aberrant morphology of hippocampal dendritic spines and cognitive deficits[J]. Mol Brain, 2021, 14(1): 129-145. DOI: 10.1186/s13041-021-00827-1.
|
[4] |
Guan R, Yang C, Zhang J, et al. Dehydroepiandrosterone alleviates hypoxia-induced learning and memory dysfunction by maintaining synaptic homeostasis[J]. CNS Neurosci Ther, 2022, 28(9): 1339-1350. DOI: 10.1111/cns.13869.
|
[5] |
Qaid EYA, Zakaria R, Sulaiman SF, et al. Insight into potential mechanisms of hypobaric hypoxia-induced learning and memory deficit - Lessons from rat studies[J]. Hum Exp Toxicol, 2017, 36(12): 1315-1325. DOI: 10.1177/0960327116689714.
|
[6] |
Zheng H, Xu P, Jiang Q, et al. Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice[J]. Microbiome, 2021, 9(1): 145-163. DOI: 10.1186/s40168-021-01088-9.
|
[7] |
Morais LH, Schreiber HLTh, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders[J]. Nat Rev Microbiol, 2021, 19(4): 241-255. DOI: 10.1038/s41579-020-00460-0.
|
[8] |
刘贵琴, 白雪, 段雅彬, 等. 高原低氧环境对大鼠肠道菌群的影响[J]. 药学学报, 2021, 56(4): 1100-1108. DOI: 10.16438/j.0513-4870.2020-1628.
|
[9] |
秦鹏蕊, 王迦南, 刘诗颖, 等. 模拟海拔5000 m低氧环境对小鼠肠道免疫和肠道菌群的影响[J]. 现代生物医学进展, 2022, 22(8): 1401-1407. DOI: 10.13241/j.cnki.pmb.2022.08.001.
|
[10] |
Wang Y, Shi Y, Li W, et al. Gut microbiota imbalance mediates intestinal barrier damage in high-altitude exposed mice[J]. Febs J, 2022, 289(16): 4850-4868. DOI: 10.1111/febs.16409.
|
[11] |
Kumari P, Roy K, Wadhwa M, et al. Fear memory is impaired in hypobaric hypoxia: Role of synaptic plasticity and neuro-modulators in limbic region[J]. Life Sci, 2020, 254: 117555. DOI: 10.1016/j.lfs.2020.117555.
|
[12] |
Alam S, Ray K, Jain V, et al. Reduced expression of Kalirin-7 contributes to working memory deficit during chronic hypobaric hypoxia exposure[J]. Behav Brain Res, 2019, 366: 135-141. DOI: 10.1016/j.bbr.2019.03.016.
|
[13] |
Shen Hui, Meng Yanling, Liu Dan, et al. α7 Nicotinic acetylcholine receptor agonist PNU-282987 ameliorates cognitive impairment induced by chronic intermittent hypoxia[J]. Nat Sci Sleep, 2021, 13: 579-590. DOI: 10.2147/nss.S296701.
|
[14] |
Lopez-Perez SJ, Morales-Villagran A, Ventura-Valenzuela J, et al. Short- and long-term changes in extracellular glutamate and acetylcholine concentrations in the rat hippocampus following hypoxia[J]. Neurochem Int, 2012, 61(2): 258-265. DOI: 10.1016/j.neuint.2012.03.009.
|
[15] |
Xue LL, Du RL, Hu Y, et al. BDNF promotes neuronal survival after neonatal hypoxic-ischemic encephalopathy by up-regulating Stx1b and suppressing VDAC1[J]. Brain Res Bull, 2021, 174: 131-140. DOI: 10.1016/j.brainresbull.2021.05.013.
|
[16] |
Pena E, El Alam S, Siques P, et al. Oxidative stress and diseases associated with high-altitude exposure[J]. Antioxidants (Basel), 2022, 11(2): 267-280. DOI: 10.3390/antiox11020267.
|
[17] |
Li Y, Wang Y. Effects of long-term exposure to high altitude hypoxia on cognitive function and its mechanism: a narrative review[J]. Brain Sci, 2022, 12(6): 808-817. DOI: 10.3390/brainsci12060808.
|
[18] |
Zheng P, Wu J, Zhang H, et al. The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression[J]. Mol Psychiatry, 2021, 26(6): 2380-2392. DOI: 10.1038/s41380-020-0744-2.
|
[19] |
Gu Y, Han Y, Ren S, et al. Correlation among gut microbiota, fecal metabolites and autism-like behavior in an adolescent valproic acid-induced rat autism model[J]. Behav Brain Res, 2022, 417: 113580. DOI: 10.1016/j.bbr.2021.113580.
|
[20] |
Chen C, Liao J, Xia Y, et al. Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation[J]. Gut, 2022, 71(11): 2233-2252. DOI: 10.1136/gutjnl-2021-326269.
|
[21] |
Chen SJ, Chen CC, Liao HY, et al. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with parkinson disease[J]. Neurology, 2022, 98(8): e848-e858. DOI: 10.1212/WNL.0000000000013225.
|
[22] |
Kim CS, Cha L, Sim M, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(1): 32-40. DOI: 10.1093/gerona/glaa090.
|
[23] |
王昱昊, 施艺, 李文豪, 等. 肠道菌群在高原低氧肠道损伤中的作用研究[J]. 中国临床解剖学杂志, 2021, 39(6): 666-672. DOI: 10.13418/j.issn.1001-165x.2021.06.009.
|
[24] |
Wang F, Zhang H, Xu T, et al. Acute exposure to simulated high-altitude hypoxia alters gut microbiota in mice[J]. Arch Microbiol, 2022, 204(7): 412-418. DOI: 10.1007/s00203-022-03031-4.
|
[25] |
Ma Y, Ma S, Chang L, et al. Gut microbiota adaptation to high altitude in indigenous animals[J]. Biochem Biophys Res Commun, 2019, 516(1): 120-126. DOI: 10.1016/j.bbrc.2019.05.085.
|
[26] |
Geerlings SY, Kostopoulos I, De Vos WM, et al. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How[J]? Microorganisms, 2018, 6(3): 75-100. DOI: 10.3390/microorg anisms6030075.
|
[27] |
Pan Z, Hu Y, Huang Z, et al. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge[J]. Sci China Life Sci, 2022, 65(10): 2093-2113. DOI: 10.1007/s11427-021-2056-1.
|
[28] |
Enaud R, Cambos S, Viaud E, et al. Gut microbiota and mycobiota evolution is linked to memory improvement after bariatric surgery in obese patients: a pilot study[J]. Nutrients, 2021, 13(11): 4061-4072. DOI: 10.3390/nu13114061.
|
[29] |
Kraimi N, Lormant F, Calandreau L, et al. Microbiota and stress: a loop that impacts memory[J]. Psychoneuroendocrinology, 2022, 136: 105594. DOI: 10.1016/j.psyneuen.2021.105594.
|