[1] |
Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J]. Int J Mol Sci, 2020, 21(20): 7533. DOI: 10.3390/ijms21207533.
|
[2] |
刘露, 翟启明, 张青, 等. 间充质干细胞聚合体治疗大鼠脊髓损伤的实验研究[J]. 神经解剖学杂志, 2020, 36(4): 362-368. DOI: 10.16557/j.cnki.1000-7547.2020.04.002.
|
[3] |
Arpin DJ, Ugiliweneza B, Forrest G, et al. Optimizing neuromuscular electrical stimulation pulse width and amplitude to promote central activation in individuals with severe spinal cord injury[J]. Front Physiol, 2019, 10: 1310. DOI: 10.3389/fphys.2019.01310.
|
[4] |
Maruoka H, Tanaka KI, Takayanagi M, et al. Effects of neuromuscular electrical stimulation on pulmonary alveola and cytokines in chronic obstructive pulmonary disease (COPD) and skeletal muscle atrophy model mice[J]. J Phys Ther Sci, 2021, 33(1): 1-8. DOI: 10.1589/jpts.33.1.
|
[5] |
Bekhet AH, Bochkezanian V, Saab IM, et al. The effects of electrical stimulation parameters in managing spasticity after spinal cord injury: a systematic review[J]. Am J Phys Med Rehabil, 2019, 98(6): 484-499. DOI: 10.1097/PHM.0000000000001064.
|
[6] |
Parvin S, Williams CR, Jarrett SA, et al. Spinal cord injury increases pro-inflammatory cytokine expression in kidney at acute and sub-chronic stages[J]. Inflammation, 2021, 44(6): 2346-2361. DOI: 10.1007/s10753-021-01507-x.
|
[7] |
Quadri SA, Farooqui M, Ikram A, et al. Recent update on basic mechanisms of spinal cord injury[J]. Neurosurg Rev, 2020, 43(2): 425-441. DOI: 10.1007/s10143-018-1008-3.
|
[8] |
Sharif S, Jazaib Ali MY. Outcome prediction in spinal cord injury: myth or reality[J]. World Neurosurg, 2020, 140: 574-590. DOI: 10.1016/j.wneu.2020.05.043.
|
[9] |
Goganau I, Sandner B, Weidner N, et al. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury[J]. Exp Neurol, 2018, 300: 247-258. DOI: 10.1016/j.expneurol.2017.11.011.
|
[10] |
Jiang L, Wei ZC, Xu LL, et al. Inhibition of miR-145-5p reduces spinal cord injury-induced inflammatory and oxidative stress responses via affecting nurr1-TNF-α signaling axis[J]. Cell Biochem Biophys, 2021, 79(4): 791-799. DOI: 10.1007/s12013-021-00992-z.
|
[11] |
Badner A, Vidal P M, Hong J, et al. Endogenous interleukin-10 deficiency exacerbates vascular pathology in traumatic cervical spinal cord injury[J]. J Neurotrauma, 2019, 36(15): 2298-2307. DOI: 10.1089/neu.2018.6081.
|
[12] |
梁爱萍, 李文辉. 小剂量超短波对脊髓损伤功能恢复及对血清iNOS、TNF-α、VEGF、BDNF表达的影响[J]. 中国临床解剖学杂志, 2020, 38(5): 588-592, 596. DOI: 10.13418/j.issn.1001-165x.2020.05.019.
|
[13] |
李向哲, 王灿, 吴勤峰, 等. 脊髓损伤后脑源性神经营养因子神经生物学效应的研究进展[J]. 中国康复理论与实践, 2018, 24(2): 160-164. DOI: 10.3969/j.issn.1006-9771.2018.02.008.
|
[14] |
Holmström U, Tsitsopoulos PP, Holtz A, et al. Cerebrospinal fluid levels of GFAP and pNF-H are elevated in patients with chronic spinal cord injury and neurological deterioration[J]. Acta Neurochir (Wien), 2020, 162(9): 2075-2086. DOI: 10.1007/s00701-020-04422-6.
|
[15] |
He Y, Sun L, Feng H, et al. Effect and mechanism of glycyrrhizin on glial scar formation after spinal cord injury in rats[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2020, 34(10): 1298-1304. DOI: 10.7507/1002-1892.202002116.
|